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Executive Summary

Multipactor breakdown is a failure mode that occurs in RF systems and system components that
operate in a vacuum. For component and system verification, multipactor is treated as a peak field
and voltage phenomena where the verification power level is chosen such that the maximum
instantaneous operational voltage in the component is excited. In a single carrier system, this power
level is fairly straightforward to determine. However, for RF components exposed to multiple distinct
signals simultaneously, there are a variety of methods used to address multipactor breakdown
verification.

This white paper describes methods of assessment and possibly to mitigate multipactor for spacecraft
components in multiple carrier systems [1]-[3]. The methods described in this paper highlight
existing approaches used in the U.S. space industry. This paper serves as a survey of current practice
and is not meant to be used as a set of requirements. This document will also highlight the advantages
and limitations of the various methods currently in use.

This document will also reference new analysis methods under investigation for multicarrier
excitation threshold prediction based on a survey of the research literature. In general, this topic is in
need of additional basic and applied research and validation in order to further improve industry
understanding prior to application.
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1. Criteria for Evaluation of Definitions

The following criteria have been agreed upon as reasonable measures when establishing which
methods to apply in a given set of analytical and/or test conditions. These criteria are by definition
somewhat objective and discretion is advised in their application. The (proposed) basic criteria for
establishing the applicability of a particular multi-carrier multipactor excitation method are:

o Ability to establish reasonable threshold definitions for power, transit time, and frequency of
operation for the situation under investigation as appropriate to the method (e.g., P20, T20,
mean frequency)

o Is the method readily amenable to analysis/test for the structure under investigation (e.g.,
availability of tools, simplicity of analysis...)?

e Can valid inputs be established for use of the method (e.g., number of carriers, carrier
phasing, and method for carrier combination)?

e Consistency of results obtained
e Ability to understand and interpret results obtained

e Are results too restrictive or too lenient?

2. System Engineering Definitions and Guidelines

2.1 System Frequency and Power Definitions — Current Industry Practices
2.1.1 N?P Method
2.1.1.1 Description

The N2P method assumes that all carriers will phase such that the maximum instantaneous peak
voltage is created. This peak voltage is converted to an equivalent CW power level, which is used as
the verification threshold. Realizing this effective power level in the device is of extremely low
probability given that generally the carriers start with random phases.

The advantage of this method is that it is understood across the industry to be a bounding condition.

2.1.1.2 Limitations
e Conservative: N?P only occurs for an instant in time, not enough electron crossings to
develop sufficient electron density

e As the number of carrier signals increases, the power thresholds grows quadratically resulting
in unreasonable test configurations and potentially unattainable power levels.

2.1.2 PX/TX Methods
2.1.2.1 Description
These power definitions are based on the multipactor gap rule. In general this rule states that the

power level threshold (Px, e.g., P4 or P2) for multipactor is determined by the transit time required
(Tx, Tao0r Ty) for an electron (bunch) to cross the structure gap. It is typically assumed that the



geometry of the structure consists of two parallel surfaces (e.g., in a parallel plate waveguide or
coaxial structure). The basic formula for the transit time is provided below,

_Xn
_Zf

Where X = number of gap crossings (e.g., 4 or 20), n = the multipactor order and f is the signal
operating frequency. The value for the operating frequency typically used can depend on the
application but is typically the mean or average frequency of the multi-carrier signals being
transmitted. In some cases, according to the literature [1], the lowest frequency of the operating
bandwidth is used. For the special case of equally-spaced carrier frequencies the formula for the
transit time takes the form,

Tx

#=7(5)

Where Af is the carrier frequency separation and T, is the time period for the modulation envelope.
The basic form of the power threshold definition is then derived by an analysis of the carrier envelope
in the time domain. This determines the amount of time the envelope exceeds the desired signal
power or voltage threshold. An example of this situation for a five-carrier signal is provided below in
Figure 1 from Anza et al., [1]
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Figure 1

The threshold level for multipactor excitation is determined by aligning the peak limit line to the
maximum level on the main lobe of the signal envelope. In the case above in Figure 1, the peak and
average power limits are shown. The modulation envelope will of course depend on the method of
combination for the carrier phases. Typically, an optimization method is used for phase combining
which results in a particular modulation envelope in the time domain. Several example phase
combinations are shown in Figure 1. The user will need to determine the method or algorithm for
phase combination most consistent with their application. Figure 2 shows examples for a
fifteen-carrier case with two different frequency separations to demonstrate this impact this parameter
can have on the carrier envelope.
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In Figure 2, we see how the carrier separation will impact the amount of time above the signal
threshold [1]. This example also demonstrates the relationship between the transit time for gap
crossings and the envelope period. The magnitude of the ratio T,/T. from reference [1] depends on the
carrier separation. This condition will determine whether the gap rule will produce a result with
positive or zero multipactor margin.

The advantages of the gap crossing rules include:

e Well established method

o Defines a criterion for a single multi-carrier peak power threshold
2.1.2.2 Limitations

o Requires knowledge of the critical gap size to establish the required breakdown threshold
e These rules only consider electron growth over a single period
e They do not account for inter-period charge growth

e The results are dependent on the main lobe level of the modulation envelope (time to exceed
threshold)

e The results depend on the carrier separation, leading to very conservative (extreme positive
margin) or very lenient performance (zero margin) against multipactor excitation



2.1.3 Total Average Power
2.1.3.1 Description

The total average power definition for multicarrier excitation of multipactor is based on the number of
carriers N multiplied by the peak power level for each carrier P. For example, in the case of

12 carriers with 60 W peak power for each carrier the total average power threshold would be 720 W.
The other parameters in the definition include,

e Frequency: worst-case in band
e Same calculation regardless of frequency band, carrier spacing, or modulation

e 3 dB multicarrier derating to account for phasing, independent of margin
The applicability of this method is covered by the following criteria

e The number of carriers is greater than or equal to 5 (N>5)
e The carriers are assumed to be randomly phased

e This method does not necessarily apply to closely spaced channels
The advantages of this method include:

e Simple to apply and use
e Decades of heritage in its use

e Based on a statistical analysis of randomly phased peaks
2.1.3.2 Limitations

The disadvantage of this method is that it is not a fully generalized approach based on the limited
guidance for carriers greater than 5. This limits the potential applicability (increases risk) for
frequency plans that require a larger number of carriers.

2.2 Future Approaches and Methods

Our current understanding of the methods for analyzing multicarrier excitation of multipactor requires
new research. Future work in this area is needed to address the open questions that remain about the
optimal usage of existing approaches. Recommendations for such application will not be possible
without new research into physical mechanisms, the impact of signal modulation design, methods for
carrier phase combination as well as materials properties. In this section we outline the current efforts
in some of these areas. The reader is referred to the literature for a more comprehensive review on
this topic.

2.2.1 Statistical Methods
2.2.1.1 Description

For the statistical approach, the goal is to apply a mathematical method for a more realistic phase
combination of the carriers in a multicarrier signal. This accounts for the statistical nature in which



phased carriers will combine in actual operation. This method is not directly or solely dependent on a
transit time rule and is not limited in the number of carriers that can be considered.

The basic statistical approach involves running a large number of cases with the carrier starting
phases treated as a random variable. This is similar to the development of a digital symbol sequence.

Using this method, the durations that the modulation peaks exceed a chosen threshold would
determine the likelihood of multipactor excitation. The use of complex multicarrier signals with
arbitrary random phase to simulate the excitation of multipactor requires proper modeling of the
excitation process physics to address the statistical impact of the waveforms on electron population
growth and dynamics. Research to develop these modeling approaches is still very active [1][4][7]
and [8].

Advantages include:

e A realistic accounting for carrier phase combinations
e The method is based on a mathematical approach that is amenable to scientific verification
e Leads to more applicable, realistic bounding cases

e Bounding curves can be easily generated
2.2.1.2 Limitations

e Requires anchoring to an existing method where margins are not consistent (i.e., the Ty rule
outlined in Section 2.1.2)

e Additional research is required in order to generalize this method for arbitrary modulation
schemes and for test validation.

2.2.2 New Research in Quasi-stationary Methods

Research to increase our understanding of the impact of multicarrier signals on electron dynamics has
been carried out in recent years [6]-[9]. This includes the development of a non-stationary theory to
provide a more general model of the electron dynamics. Recent work also includes a framework for
the analysis of multipactor excitation under non-resonant polyphase conditions. This approach works
to overcome some of the limitations of earlier methods which simulate the multi-carrier signal as a
single-carrier signal with a modulated pulse signal envelope. The previous method results in
questions about the proper modeling of electronic charge accumulation during inter-pulse periods
(pulse-off/dwell times).

Recent work in the area of quasi-stationary signal characterization has been undertaken as another
alternative to the gap crossing approaches mentioned above in Section 2.1.2. These methods involve
the use of a non-stationary approach to model the multipactor electron dynamics as well as
characterizing the electron-surface absorption processes. Both resonant and non-resonant multipactor
processes can be modeled using this technique. A key element of the new theory is to model the
secondary electron velocity as a random variable. A probability distribution function (e.g., a
Maxwellian distribution) is used to model the electron emission velocities during the initiation and
duration of the multipactor processes. This results in a distribution of electron phases, impact energies
and multipactor orders as described in Anza, et al. [8]. The new methods of Anza et al. introduce
random variables for additional parameters that directly model the electron dynamics to model the
physics of the multipactor process. This is distinct from solely modeling the signal characteristics of



the multipactor process by assigning only the signal phase as a random variable. Additional research
(analytical and experimental) is required to determine the validity and applicability of these various
approaches.

3. Risk Profile

Based on the results of a tailoring exercise and agreement from the engineering and customer
communities, a risk profile should be developed that carefully outlines the impacts to the system and
program based on the choice of a particular multicarrier definition. This should include an assessment
of the inputs and results of the tailoring process and fully account for the impact of both advantages
and disadvantages of the method chosen.
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